LeadSuccess API for Salesforce

LeadSuccess API for Salesforce

The LeadSuccess API for Salesforce provides access to server-side data structures and procedures via
a RESTful API to enable 3™ party developers building customized Export interface from the
LeadSuccess System to Salesforce CRM system with standard web techniques and is covering the
data created in the original LeadSuccess App in objects compatible to Salesforce objects.

You can find more information on http://www.convey.de/ to learn about further components of the

LeadSuccess system.

Seite 1 von 46

http://www.convey.de/

LeadSuccess API for Salesforce

LeadSucces App
Introduction

The LeadSuccess App allows you to collect data and information about the visitors in an easy, fast
and reliable way. It allows you to get the visitor’s data in various ways; in fact, it is possible to scan
barcodes, QR-Codes, business card or enter information manually. In addition to this, it is also
possible to fill out a customizable questionnaire, take notes and add pictures and sketches to every
contact you collect.

Exhibitor Portal

Everything can be managed through the “Exhibitor Portal” which allows you to manage your App
users, create your own event-specific questionnaire, check and edit leads and furthermore export
your collected leads to different Excel formats.

You will need a valid LeadSuccess admin account to configure the event and app users. App user
credentials configured in the “Exhibitor Portal” can be used either with the original LeadSuccess App
or for requests with basic authentication to use the API.

You will find additional information about administration of LeadSuccess in the document “User
Guide LeadSuccess Mobile — Online Portal”

LeadSuccess app structure
The LeadSuccess App user interface offers the following functional areas to the user:

- Start Page:
Event name, user name, number of contacts, present state, new message flag

- Capture Barcode
Create a new contact based on the visitor’s badge barcode

- Capture Business card
Create a new contact based on the visitor’s business card photo and save the photo linked to
the contact

- Edit contact manually
Create a new contact or edit existing address fields of a selected visitor contact

- Edit questionnaire
Offers a form to answer the questions of the questionnaire based on the questionnaire
configuration (multiselect, single select, combo, rating, text notes, date picker, optional
guestions, mandatory questions). Each questionnaire is linked to a selected contact

- Create notes
Create and edit sketches in SVG format, capture photos, capture audio messages. All notes
are linked to a selected contact

- Edit user state
Edit personal user data, toggle the present state, receive and send user messages and

Seite 2 von 46

LeadSuccess API for Salesforce

capture a user photo. The data is linked to the employee data of the app user and can be
administrated in the Exhibitor Portal

Access protocol

To access this interface is used a subset of ODATA protocol. See ODATA org. ODATA server is based
on SAP SQL Anywhere 17 OData implementation. Therefore currently only ODATA version 2.0 syntax
can be used. See http://www.odata.org/documentation/odata-version-2-0

LeadSuccess API users will get the <server-name> and <api-name> to be used for your API-requests
together with their login information from convey.

To access this API, HTTPS basic authentication is used. It means user and password has to be
transmitted via HTTPS with each request. Since HTTP(S) is a stateless protocol, each request is
computed in individual transactions. GET and POST requests return table data as result of the
request in the specified format, e.g. JSON. If you use a XMLHTTPRequest alike JavaScript API, use
JSON.parse(response.responseText) to transform the result in a JSON object that for automatic data-
binding to Ul elements within your preferred framework. Some requests will result in URLs to get
further data. Due to technical limitations the provided address of these links is a local address and
not your APl address. Please replace that local address in these URLs to:

https://<server-name>/<api-name>/...

All parameter data must be transferred in JSON format to the ODATA server. For results the JSON
format can be selected with the "Sformat=json" request option or with the HTTP header “Accept:
application/json”, otherwise the server returns the results in XML format. All text data is UTF-8
encoded, except described otherwise for specific data fields. All date-time data is in UTC time zone.

Pay attention to the fact, that the OData request syntax is case sensitive!

A user can only keep one transaction active at a time. If several parallel transactions are to be
supported, different users must be used for this!

The following request types are supported

Select data

Use requests of type: GET to select data from LeadSuccess relations. You should distinguish at least
these different types of GET requests:

Select a list of rows
You can select lists of data from API objects with requests like:
GET https://<server-name>/<api-name>/LSA <table-name>?Sformat=json

You can use the Sfilter=(<filter-list>) and Sorderby=(<orderby-list>) options to specify restrictions and
list order to the request.

Requests of this kind will return an array of rows, that could be handled like this:
function xhrSuccess(response) {

Seite 3 von 46

http://www.odata.org/
http://help.sap.com/disclaimer?site=http://www.odata.org/documentation/odata-version-2-0

LeadSuccess API for Salesforce

var obj = JSON.parse(response.responseText);
var results = obj &% obj.d && obj.d.results;
handleResults(results);

}

The result size maximum to be fetched by one request is limited to 100 rows. To fetch the next row-
set, you can use the parameter Sskiptoken(<primary-key-value>) in a following GET request to the
same relation. To simplify that, you can use the following member in result JSON structure as
described above:

obj.d.__next

Remember to replace the server path in the URL as described above, e.g.:

var getNextUrl = function (json) {
var url = "";
if (json && json.d) {
var next = json.d.__next;
if (next && typeof next === "string") {
var viewNamePos = next.lastIndexOf("/");
if (viewNamePos >= 0) {
url = "https://<server-name>/<api name>" +
next.substr(viewNamePos);

}
¥

return url;

Fetch next list of rows

Use a nextURL given from earlier select request to fetch the next row-set. The returned result is
similar to the one of the first select request, including results array and __next member for following
row-set, if end of data isn’t reached yet.

Select single row
You can use the primary key of each table to select a single row of data with the following request:

GET https://<server-name>/<api-name>/LSA <table-name>(<primary-key-value>)?$format=json

Primary keys are always attributes of an integer type.

Requests of this kind will return one row, that could be handled like this:
function xhrSuccess(response) {
var obj = JSON.parse(response.responseText);
var result = obj & obj.d;
handleResults(result);
}

Seite 4 von 46

LeadSuccess API for Salesforce

Procedure call

Use requests of type: GET to call procedures. Parameters need to be placed URL-encoded within the
URL.

var options = {
type: "GET",
user: <user-name>,
password: <password>,
url: "https://<server-name>/<api-name>/<procedure-name>?<parameters>& $format=json",

s
You can build the parameters list like this:

<paramaters> = <paraml>=<valuel>&<param2>=<value2>...;

CORS requirements

To support cross-site access-control requests, you should specify the withCredentials member of
the XMLHttpRequest to true. You may need to add an option e.g. like this to add the value all your
xhr requests, if supported by the XMLHttpRequest object:

var options = {

//
// other options depending from action, see above
//
//
customRequestInitializer: function(req) {
if (typeof req.withCredentials !== "undefined") {
req.withCredentials = true;
}
}
}s

Authorization header

To support server-side authorization propagation by some browser clients, like Google Chrome, you
should add an “Authorization” header:

var options = {

//

// other options depending from action, see above

//

//

headers: {

"Authorization": "Basic " + btoa(<user> + ":" + <password>)
}
¥

Seite 5 von 46

LeadSuccess API for Salesforce

Resources
Data categories

Based on the given function areas, the frontend needs to handle different data structures to offer the
functionality of the LeadSuccess App. This data can be divided in:

- Static data
to be loaded only once after app installation

- Event data:
to be loaded at least once after app installation and updated after administrative changes in
the LeadSuccess Exhibitor Portal

- Application runtime data
to be loaded at least once after app installation and updated after interactive changes in the
app or in the LeadSuccess Exhibitor Portal

- Visitor data
to be created interactively in the app and to be retrieved via search and list panes

All data is organized in an object structure similar to Salesforce objects. Object contain Salesforce
system fields like Id, CreatedDate and LastModifiedDate and object-specific fields. Each Object has a
unique Id, that can be referenced as Ownerld field in another object. The LeadSuccess API for
Salesforce API offers views called LS_<object-name> or LS_<Procedure-name> to access the data.

Access rights

The LeadSuccess API for Salesforce offers access rights on object-level to the provided views in order
to their usage. For static application and runtime data only GET requests are offered. Accessing an
object with an unsupported request option will return an exception.

The LeadSuccess API for Salesforce offers access rights on row-level to the provided views. You can
only access rows of data in the user context of the currently logged-in user.

Data schema

You can retrieve the full schema data with the following request:

GET https://<server-name>/<api-name>/$metadata

Seite 6 von 46

LeadSuccess API for Salesforce

Static master data
LS_Country

Select the entries of this view to receive s list of CountryCodes and Countries that can be referenced
in LeadSuccess API for Salesforce.

Name Type Description

LGNTINITLandViewld Int32 Primary key value

Id Single-Byte-String(2) Two letter ISO code. Only single-byte
characters are allowed in this field

Country String(255) Display text for the country to select

You can use several reference columns to identify country selection for data export.

Seite 7 von 46

LeadSuccess API for Salesforce

Application runtime data
Select this data to show information relevant for application runtime.
LS_Event

Select the entries of this view to show information about the events referenced by collected data.

Name Type Description

VeranstaltungViewld Int32 Primary key value.

Id UUID-String(36) Universal Unique Identifier. Use this value as
reference in objects referencing the Event
object.

CreatedDate DateTime Creation timestamp of the event object

LastModifiedDate DateTime Timestamp of last modification of the event
object

Subject String(127) Display text for the event shown in the app.
The value can be edited in LeadSuccess portal

StartDate Date Start date of event

EndDate Date End date of event

Type String(255) Name of event organizer, defaults to value
“LeadSuccess”

EventSubtype String(1000) Title of the event, usually the name of a trade
show

Description String(255) A description of the event. The value can be
edited in the LeadSuccess portal

Seite 8 von 46

LeadSuccess API for Salesforce

LS_User

Select the entries of this view to show information about the users creating or modifying the
collected data.

Name Type Description

MitarbeiterViewld Int32 Primary key value

Id Single-Byte-String(63) | Login name of the user. Only single-byte
characters are allowed in this field

FirstName String(64) First name of the user. Can be edited in
LeadSuccess portal and app

LastName String(255) Last name of the user. Can be edited in
LeadSuccess portal and app

Email String(500) Email address of the user. Can be edited in the
LeadSuccess app

Phone String(64) Phone number of the user. Can be edited in the
LeadSuccess app

MobilePhone String(64) Cellphone number of the user. Can be edited in
the LeadSuccess app

Street String(127) Street address of the user. Can be edited in the
LeadSuccess app

PostalCode String(12) Postal code / ZIP address of the user. Can be
edited in the LeadSuccess app

City String(127) City address of the user. Can be edited in the
LeadSuccess app

Country String(255) Country address of the user. Can be selected in
the LeadSuccess app

CountryCode String(2) 2-character ISO-code of the country address of
the user.

Currentstatus String(32) Role of the user in LeadSuccess system, e.g.
booth staff member or administrator

EventID UUID-String(36) Universal Unique Identifier. References the Event
where the user is currently related to and is able
to collect data for in the LeadSuccess app.

Seite 9 von 46

LeadSuccess API for Salesforce

Visitor data
LS_Lead

Select the entries of this view to retrieve visitor contact data collected or edited on LeadSuccess App
Portal, Kiosk or Service devices or via LeadSuccess API.

Name Type Description

KontaktViewld Int32 Primary key value

Id UUID-String(36) Universal Unique Identifier. Use this value as
reference in objects referencing the Lead object.

CreatedDate DateTime Creation timestamp of the lead object.

LastModifiedDate DateTime Timestamp of last modification of the lead object

CreatedByld Single-Byte-String(63) | Reference to the User who created this Lead

LastModifiedByld Single-Byte-String(63) | Reference to the User who modified this Lead
most recently

Salutation String(32) Salutation

Suffix String(80) Name suffix

FirstName String(255) First name

MiddleName String(64) Middle name

LastName String(128) Last name

Company String(1024) Company name

Title String(80) Job title

Phone String(64) Phone number

MobilePhone String(64) Cellphone number

Fax String(64) Fax number

Email String(500) Email

Website String(500) Website

Street String(128) Street address

PostalCode String(12) Postcode / ZIP of address

City String(128) Name of city

Country String(32) Name of country

CountryCode Single-Byte-String(2) | Two letter ISO code. Only single-byte characters
are allowed in this field

State String(128) Name of federal state

Description String(4000) User edited comments or automatically
recognized other information that isn’t related to
the other fields

AttachmentldList LONG String: List of | Comma-separated list of UUID-Strings

UUID-String(36) referencing Attachment objects related to the

Lead object

SalesArea String(4000) User edited or automatically created text to
describe the sales area where the lead might be
related to. Sales area might be related to address
regions via postal code or to specific
guestionnaire selection

RequestBarcode String(1000) Barcode identifier in case of the lead was
collected via ticket barcode-scan and is delivered
from trade show organizers visitor database

StatusMessage String(255) Error message from trade show organizers visitor
database in case of failed lead retrieval by ticket
barcode-scan

Seite 10 von 46

LeadSuccess API for Salesforce

Name Type Description
Deviceld Int32 Identifier of the local app database on the device
where the lead was collected. Usually the
Identifier of the user’s device. This number is
shown in the LeadSuccess app and portal as the
first number on “Contact list” or “Contact page”.
DeviceRecordld Int32 Identifier of the lead on the local app database
on the device where the lead was collected. This
number is shown in the LeadSuccess app and
portal as the second number on “Contact list” or
“Contact page”.
SystemModstamp DateTime Timestamp of last modification of the lead object
by automatic processing on the LeadSuccess
server. Even if LastModifiedDate happened
earlier on a device that had no online connection
to the LeadSuccess server for a while,
SystemModstamp will change after new or
modified leads are being received from the
LeadSuccess server. This value defaults to
LastModifiedDate if no automatic processing
occurred yet.

EventID UUID-String(36) UUID reference to the Event where the Lead was
collected

IsReviewed Int32 Value specifying if the lead yet being reviewed in
back-office

By adding a Sfilter query like the following to your GET request, you can do a call to query for only
the newly created Lead objects that have been added since the last call or whether there are any

Lead objects that have been processed on the server since a certain date-time because older data
from devices has been received subsequently, because devices weren’t online all the time:

$filter=(SystemModstamp ge cast(€2023-11-02T07:00:00Z°,’°Edm.DateTime’))

given the certain date-time of 2. Nov. 2023 at 7:00 UTC when your last call happened. Remember to
use greater-or-equal to get changes that happened in the same second of your previous call. You
have to use the returned date-time in milliseconds to compare with previously received results.

Remember to call for data of all attachments in the returned AttachmentldList and check the
LastModifiedDate of each attachment in case of SystemModstamp has changed in the Lead object.

You can use the Sorderby option for specific sort order of your result set:
$orderby=KontaktViewId

e.g. to order the result set by primary key value. Adding desc will order the results descending

Please remember to URL-encode spaces %20 and quotes %27 in your GET request.

Seite 11 von 46

LS_LeadReport

Select all entries from this view to get the list of collected visitor contact data with related answers to

the questionnaire.

LeadSuccess API for Salesforce

Name

Type

Description

KontaktViewld

Int32

Primary key value

Id

UUID-String(36)

Universal Unique Identifier. Use this value as
reference in objects referencing the Lead object.

CreatedDate DateTime Creation timestamp of the lead object.
LastModifiedDate DateTime Timestamp of last modification of the lead object
CreatedByld Single-Byte-String(63) | Reference to the User who created this Lead

LastModifiedByld

Single-Byte-String(63)

Reference to the User who modified this Lead
most recently

Salutation String(32) Salutation

Suffix String(80) Name suffix

FirstName String(255) First name

MiddleName String(64) Middle name

LastName String(128) Last name

Company String(1024) Company name

Title String(80) Job title

Phone String(64) Phone number

MobilePhone String(64) Cellphone number

Fax String(64) Fax number

Email String(500) Email

Website String(500) Website

Street String(128) Street address

PostalCode String(12) Postcode / ZIP of address

City String(128) Name of city

Country String(32) Name of country

CountryCode Single-Byte-String(2) | Two letter ISO code. Only single-byte characters
are allowed in this field

State String(128) Name of federal state

Description String(4000) User edited comments or automatically
recognized other information that isn’t related to
the other fields

IsReviewed Int32 Value specifying if the lead yet being reviewed in

back-office

AttachmentldList

LONG String: List of
UUID-
String(2147483647)

Comma-separated list of UUID-Strings
referencing Attachment objects related to the
Lead object

SalesArea

String(4000)

User edited or automatically created text to
describe the sales area where the lead might be
related to. Sales area might be related to address
regions via postal code or to specific
questionnaire selection

RequestBarcode

String(1000)

Barcode identifier in case of the lead was
collected via ticket barcode-scan and is delivered
from trade show organizers visitor database

StatusMessage

String(255)

Error message from trade show organizers visitor
database in case of failed lead retrieval by ticket
barcode-scan

Seite 12 von 46

LeadSuccess API for Salesforce

Name

Type

Description

Deviceld

Int32

Identifier of the local app database on the device
where the lead was collected. Usually the
Identifier of the users device. This number is
shown in the LeadSuccess app and portal as the
first number on “Contact list” or “Contact page”.

DeviceRecordld

Int32

Identifier of the lead on the local app database
on the device where the lead was collected. This
number is shown in the LeadSuccess app and
portal as the second number on “Contact list” or
“Contact page”.

SystemModstamp

DateTime

Timestamp of last modification of the lead object
by automatic processing on the LeadSuccess
server. Even if LastModifiedDate happened
earlier on a device that had no online connection
to the LeadSuccess server for a while,
SystemModstamp will change after new or
modified leads are being received from the
LeadSuccess server. This value defaults to
LastModifiedDate if no automatic processing
occurred yet.

EventID

UUID-String(36)

UUID reference to the Event where the Lead was
collected

Question01

String(2000)

Question text 1

Answers01

String(2000)

Answer to question 1

Text01

String(2000)

Optional text to question 1

To

Question30

String(2000)

Question text 30

Answers30

String(2000)

Answer to question 30

Text30

String(2000)

Optional text to question 30

Seite 13 von 46

LeadSuccess API for Salesforce

LS_AttachmentByld

Call this procedure to select any Attachment related to a Lead object, like the PDF file of the
guestionnaire, the business card image, questionnaire-related or other attached photos, attached
sketches or voice-notes. Attachments can be saved as document files of different file types specified
via MIME type. Binary data of the file content is Base64 encoded.

Parameter Type
Id UUID-String(36)

Description
UUID of the attachment

The procedure will return LS_Attachment data, like row select. Direct query string selection of

LS_Attachment isn’t supported at the moment for performance reason.

LS_Attachment

Name Type Description

Id UUID-String(36) Universal Unique Identifier. Use this
value as reference in objects
referencing the Attachment object.

CreatedDate DateTime Creation timestamp of the attachment
object.

LastModifiedDate DateTime Timestamp of last modification of the

attachment object

CreatedByld

Single-Byte-String(63)

Reference to the User who created
this Attachment

LastModifiedByld

Single-Byte-String(63)

Reference to the User who modified
this Attachment most recently

Name String(255) File name of the attachment

Description String(4000) Optional description of the
attachment. Description is delivered
for attachments containing data-
protection policies, business card
images or questionnaire-related
photos.

ContentType String(255) MIME-type of the file data

Body LONG String Base64 encoded data of the file

BodylLength Int32 File size

Ownerld UUID-String(36) Reference to the Lead object where

this Attachment object is related to

You can use the following GET-request to select a specific Attachment object with Id <attachment-
id> from the AttachmentldList of a Lead object.:

GET https://<server-name>/<api-name>/LS AttachmentById?Id=’<attachment-id>’&$format=json

Please remember to URL-encode quotes %27 in your GET request.

Seite 14 von 46

LeadSuccess API for Salesforce

Sample API Application

This chapter introduces a reference implementation of a sample application built to showcase the
core functionality of the APl in a practical and interactive manner. The example is intended as a
technical guide and can be used as a template for developing your own integration. It is important to
emphasize that this application is not required to access or use the API. Instead, it provides a
convenient way to explore real-world usage patterns, inspect the source code, and better
understand the expected request/response behavior, data structures, and integration flows. The goal
is to reduce implementation effort by offering a concrete starting point for developers.

Additionally, each page includes a link to download a preconfigured Postman collection. This allows
developers to experiment with the individual API calls directly in Postman, using various parameters,
if they prefer to explore the APl in that environment.

General Application Design

Introduction

LeadSuccess API for Salesforce is a solution that provides access to server-side data structures and
procedures via a RESTful API. It enables third-party developers to create customized export
interfaces from the LeadSuccess system to the Salesforce CRM system using standard web
techniques.

The application offers an intuitive user interface for: - Viewing event data - Managing leads and lead
reports - Visualizing attachments - Transferring data to Salesforce

The source code can be found in the following GitHub repository:
https://github.com/conveyGmbH/LSAPISFSamples www

A sample website is available at the following address:
https://lsapisfsamples.convey.de/

Project Structure

The project is organized as follows:

LSAPISAMPLES/
F—github/ # GitHub configuration
F—"_vscode/ # VS Code configuration
F—api/ # API endpoints
F—css/ # Style files
F—docs/ # Documentation
F— fonts/ # Fonts
F— images/ # Images and graphical resources
F—1js/ # JavaScript code

F— config/ # Configuration files

F— controllers/ # Controllers for different views

Seite 15 von 46

https://github.com/conveyGmbH/LSAPISFSamples_www
https://lsapisfsamples.convey.de/

LeadSuccess API for Salesforce

F— services/ # Services for API calls
utils/ # Utility functions
F— pages/ # HTML pages of the application
F— postman/ # Postman collection for API testing
F— salesforce-backend/ # Backend code for Salesforce integration
F— .gitignore # Git configuration
F— config.txt # Application configuration
F— index.html # Application home page
F— README.md # General documentation
staticwebapp.config.json # Hosting configuration

Application Login

To access the application, the user must provide their login credentials.
Login Process:

1. Open the application in your browser
2. Enter the following information on the login screen:
— Server name (serverName)
— APl name (apiName)
- Username (userName)
- Password (password)
3. Click on the “Login” button

// Login code example
async function login() {

const serverName = document.getElementById("serverName").value.trim();
const apiName = document.getElementById("apiName").value.trim();

const userName = document.getElementById("userName").value.trim();
const password = document.getElementById("password").value.trim();

if (!serverName || !apiName || !userName || !password) {
return displayError("Please fill in all fields.");

}

try {

const credentials = btoa(${userName}:${password});
saveSessionData(serverName, apiName, credentials);
const apiService = new ApiService(serverName, apiName);
const response = await apiService.request("GET", "");

if (response) {
window.location.href = "/pages/display.html";
}
} catch (error) {
console.error("Error during connection:", error);
displayError("Error during connection. Please try again.");

Seite 16 von 46

LeadSuccess API for Salesforce

Interface Navigation
After logging in, the main interface consists of several sections:

Header: Contains the LeadSuccess logo and the logout button

Sub-header: Displays the application title and a link to the documentation

Entity Selector: Allows you to choose the entity to display (LS_Country, LS_User, LS_Event)
Filters: Options to filter the displayed data

Data Table: Display of data with sortable columns

Action Buttons: Buttons to interact with the selected data

AN S

Navigation Between Pages

The application uses the headerController.js controller to manage navigation between different
pages:
// headerController.js - Logo navigation

function handleClickLogo() {
const logoDiv = document.querySelector('.logo');

if (logoDiv) {
logoDiv.style.cursor = 'pointer’;

logoDiv.addEventListener('click"', () => {
const currentPage = window.location.pathname.split('/").pop();
if (currentPage !== 'display.html') {
const baseUrl = getBaseUrl();
window.location.href = ~${baseUrl}/display.html”;

s

Main Application Components
Data Management
Selecting an Event

Before you can view Leads or Lead Reports, you must first select an Event in the main interface.

In the entity selector, choose “LS_Event”

The table displays the list of available events

Click on a row to select an event

Once the event is selected, the “View Leads” and “View Lead Reports” buttons are activated

No v ks

Seite 17 von 46

LeadSuccess API for Salesforce

// Event selection code example
function handleRowClick(item, event) {
const row = event.currentTarget;
const tbody = document.querySelector('tbody');

if (row.classlList.contains('selected')) {
row.classList.remove('selected');
selectedEventId = null;
sessionStorage.removeltem('selectedEventId');
updateButtonState(false);

} else {
const previouslySelected = tbody.querySelector('tr.selected');
if (previouslySelected) {

previouslySelected.classList.remove('selected');

}

row.classlList.add('selected');
selectedEventId = item.Id;
sessionStorage.setItem('selectedEventId', selectedEventId);

if (currentEntity === ACTIVATING_ENTITY) {
updateButtonState(true);

} else {
updateButtonState(false);

}
}
¥

Viewing Leads

After selecting an Event, you can access the list of Leads associated with that event.

Click on the “View Leads” button
The application displays the list of Leads for the selected event
You can:
- Filter Leads using the filtering options
— Sort Leads by clicking on column headers
— View attachments by selecting a Lead and then clicking on “Show Attachment”
— Transfer a Lead to Salesforce by clicking on “Transfer to Salesforce”

Viewing Lead Reports

Lead Reports provide detailed information about Leads, including questionnaire responses.

1. Click on the “View Lead Reports” button
2. The application displays the list of Lead Reports for the selected event
3. The functionality is similar to that of viewing Leads

Attachment Management

LeadSuccess API for Salesforce allows you to view attachments associated with Leads.

Seite 18 von 46

LeadSuccess API for Salesforce

Supported Attachment Types:

. Images (PNG, JPEG, SVG)
. PDF documents

. Audio files

. Video files

o Other file formats

Viewing Attachments:
1. Select a Lead or Lead Report from the list
If attachments are available, the “Show Attachment” button is activated
Click on “Show Attachment” to display the attachments
The application displays the attachments as tabs
Click on a tab to view the corresponding attachment
Use the “Download” button to download the attachment

ok wWN

// Code example for displaying attachments
function displayAttachment(attachment) {

const attachmentContainer = document.getElementById('attachmentContainer');
const fileNameElement = document.getElementById('fileName');
const downloadButton = document.getElementById('downloadButton');

if (lattachment) {

attachmentContainer.innerHTML = '<div class="no-data"><p>No attachment
available</p></div>";

fileNameElement.textContent = 'No file';

downloadButton.style.display = 'none’;

return;

}

// Attachment properties

const fileName = attachment.Name || 'attachment';
const fileType = attachment.ContentType;

const base64Data = attachment.Body;

const fileSize = attachment.BodyLength;

// Update file name display
fileNameElement.textContent = fileName;
downloadButton.style.display = 'inline-flex';
downloadButton.disabled = false;

if (!base64Data || !fileType) {
attachmentContainer.innerHTML = '<div class="no-data"><p>Missing data for this
attachment</p></div>";
return;

}

try {
Seite 19 von 46

LeadSuccess API for Salesforce

const dataUrl = “data:${fileType};base64,${base64Data}" ;

// Configure download button
downloadButton.onclick = () => {
const a = document.createElement('a");
a.href = dataUrl;
a.download = fileName;
document.body.appendChild(a);
a.click();
document.body.removeChild(a);

1

// Display based on file type
if (fileType === 'image/svg+xml' || fileName.tolLowerCase().endsWith('.svg"')) {
// Code for SVG files
} else if (fileType.startsWith('image/")) {
// Code for images
attachmentContainer.innerHTML = ~<img src="${dataUrl}" alt="${fileName}"
style="max-width: 100%; max-height: 500px;" /> ;
} else if (fileType === 'application/pdf') {
// Code for PDFs
attachmentContainer.innerHTML = °
<iframe
src="${dataUrl}#view=Fit&scrollbar=0"
class="pdf-viewer"
type="application/pdf"
style="width: 100%; height: 100%; border: none;"
>
<p>Your browser does not support displaying PDFs. <a href="${dataurl}"
download="${fileName}">Download the PDF to view it.</p>
</iframe>";
} else if (fileType.startsWith('audio/")) {
// Code for audio
attachmentContainer.innerHTML = °
<audio controls style="width: 100%;">
<source src="${dataurl}" type="¢${fileTypel}">
Your browser does not support this audio element.
</audio>";
} else if (fileType.startsWith('video/")) {
// Code for video
attachmentContainer.innerHTML = °
<video controls style="width: 100%; max-height: 500px;">
<source src="${dataurl}" type="¢${fileTypel}">
Your browser does not support this video element.
</video>";
} else {
// Other file types
attachmentContainer.innerHTML = °
<div class="no-data">
<p>${fileName} (${(fileSize / 1024).toFixed(2)} KB)</p>
<p>Preview not available for this file type (${fileType})</p>
<p>Use the download button to open the file</p>
</div>";
}
} catch (error) {

Seite 20 von 46

LeadSuccess API for Salesforce

console.error("Error displaying attachment:", error);

showError (" Error displaying attachment: ${error.message});

attachmentContainer.innerHTML = “<div class="no-data"><p>Error displaying
attachment: ${error.message}</p></div>";

}
}

LeadSuccess API Management

Data Structure

For the complete data structure details, please refer to the existing LeadSuccess API for Salesforce
data schema documentation.

You can retrieve the full schema data with the following request:

GET https://<server-name>/<api-name>/Smetadata

Important Note: The OData request syntax is case sensitive! This is a common issue that clients
encounter when working with the API.

A key aspect of the implementation is that the column headers displayed in the sample site interface
exactly match the attribute names in the JSON response from API requests. This 1:1 mapping follows
the OData schema, making it intuitive to understand the data structure.

Additionally, the attribute names provided in the JSON response from APl requests correspond to the
attribute names of the associated Salesforce objects, which simplifies the data transfer process.

Example Requests and Responses

LS_Country

Request: GET https://lstest.convey.de/apisftest/LS Country?$format=json

Response:
{
lldll: {
"results": [
{
" metadata": {
"uri": "http://localhost:8091/odata_apisf/LS_Country('AC"')",
"type": "LeadSuccessAPISFOData.LS_Country"
s
"Td": "AC",
"LGNTINITLandViewId": 247,
"Country": "Ascension"

Seite 21 von 46

https://lstest.convey.de/apisftest/LS_Country?$format=json

//

LS_User

More country entries...

LeadSuccess API for Salesforce

Request: GET https://lstest.convey.de/apisftest/LS User?$format=json

Response

{
"d": {
"res

{

ults™: [

" __metadata": {

uri-:

"http://localhost:8091/odata_apisf/LS_User('adminl%40512.leadsuccess.de')",

}
/7

LS_Event

Request:

"type": "LeadSuccessAPISFOData.LS_User"
}J
"Id": "adminl@512.leadsuccess.de",
"MitarbeiterViewId": 1244,
"FirstName": "Admin",
"LastName": "IBM API Test",
"Email": null,
"Phone": null,
"MobilePhone": null,
"Street": null,
"PostalCode": null,
"City": null,
"Country": null,
"CountryCode": null,
"CurrentStatus": "CustomerAdmin",

"EventId": "a@98del4-34e9-4170-9776-34e3d94c272a"

More user entries...

CopyGET https://lstest.convey.de/apisftest/LS Event?$format=json

Response
lldll: {
"res

{

41b74bo7

o
ults": [

" __metadata": {

"uri": "http://localhost:8091/odata_apisf/LS_Event('9b1763d8-1c4e-47ce-8903-

20e9')",

"type": "LeadSuccessAPISFOData.LS_Event"

Seite 22 von 46

https://lstest.convey.de/apisftest/LS_User?$format=json
https://lstest.convey.de/apisftest/LS_Event?$format=json

LeadSuccess API for Salesforce

}s
"Id": "9b1763d8-1c4e-47ce-8903-41b74b0720e9",

"VeranstaltungViewId": 317,

"CreatedDate": "/Date(1537353034106)/",
"LastModifiedDate": "/Date(1723646756169)/",
"Subject": "API Test",

"StartDate": "/Date(1546300800000)/",
"EndDate": "/Date(1956441600000)/",

"Type": "Test Veranstalter LS-TEST",
"EventSubtype": "API Test Accounts”,
"Description”: null

}

// More event entries...

LeadSuccess API for Salesforce uses the OData protocol to access data. The main entities are:

1. LS_Country: Information about countries
- Id: Two-letter ISO code
- Country: Country name
2. LS_Event: Information about events
- Id: Universal Unique Identifier (UUID)
— Subject: Event name
- StartDate: Start date
- EndDate: End date
- Type: Event type
- EventSubtype: Event subtype
- Description: Event description
3. LS_User: Information about users
- Id: User login name
- FirstName: First name
- LastName: Last name
- Email: Email address
- Phone: Phone number
- Eventld: Reference to the event to which the user is attached
4. LS_Lead: Information about leads
- Id: Universal Unique Identifier (UUID)
- FirstName: First name
- LastName: Last name
- Company: Company
- Email: Email address
- Phone: Phone number
- Country: Country

Seite 23 von 46

- AttachmentldList: List of attachments
- Eventld: Reference to the event

LeadSuccess API for Salesforce

5. LS_LeadReport: Detailed information about leads with questionnaire responses

- Same fields as LS Lead

- Question01 to Question30: Questionnaire questions
- Answers01 to Answers30: Answers to questions
— Text01 to Text30: Optional text for each question

6. LS_Attachment: Information about attachments
- Id: Universal Unique Identifier (UUID)
- Name: File name
- ContentType: MIME type
- Body: Base64-encoded file data
- BodyLength: File size

- Ownerld: Reference to the Lead to which the attachment is associated

ApiService.js - Main Communication Service

Architecture and Key Features

// apiService.js
export default class ApiService {

constructor(serverName, apiName) {
this.serverName = serverName;
this.apiName = apiName;

The ApiService service is the cornerstone of communication between the application and the
LeadSuccess API. It handles HTTP requests, authentication, and response processing.

this.credentials = sessionStorage.getItem("credentials") || null;

}

// Main method for making API requests

async request(method, endpoint, data = null) {
/...

}

// Method to get the next page URL (pagination)
getNextUrl(data) {

/] ...
}

// Method to fetch the next page of results
async fetchNextRows (nextUrl) {

/]l ...
}

// Method to log out of the application

Seite 24 von 46

LeadSuccess API for Salesforce

logout() {
/] ...

// Error handling methods
handleHttpError(status, errorData = {}) {
/...

handleNetworkError(error) {

/] ...

showError(message, shake = false) {

/...

Main Method: Request

The request method is the heart of the ApiService service. It handles all communication with the API.

async request(method, endpoint, data = null) {
const errorkElement = document.getElementById("errorMessage");
if (errorkElement) errorElement.style.display = "none";

try {
// Check that credentials are available

if (!this.credentials) {
throw new Error("No credentials found");

}

// Prepare HTTP headers with basic authentication
const headers = new Headers({

Accept: "application/json",

Authorization: “Basic ${this.credentials}’,

1

// Add Content-Type header for methods other than GET

if (method !== "GET") {
headers.append("Content-Type", "application/json");

}

// Request configuration
const config = {

method,
headers,
credentials: "same-origin",
¥
// Add request body for methods with data
if (data) {
config.body = JSON.stringify(data);
}

Seite 25 von 46

LeadSuccess API for Salesforce

// Build the complete URL
const url = “https://${this.serverName}/${this.apiName}/${endpoint}";

// Execute the request
const response = await fetch(url, config);

// Handle HTTP errors

if (!response.ok) {
const errorData = await response.json().catch(() => ({}));
this.handleHttpError(response.status, errorData);
return null;

}

// Parse and return the JSON response
return await response.json();

} catch (error) {
// Handle network errors
this.handleNetworkError(error);
return null;

Pagination Handling

LeadSuccess API uses pagination to handle large datasets. The ApiService service offers specific
methods to facilitate this pagination.

// Method to extract the next page URL from the response
getNextUrl(data) {
let url = "";
if (data && data.d) {
const next = data.d.__next;

if (next && typeof next === "string") {
const viewNamePos = next.lastIndexOf("/");

if (viewNamePos >= @) {
// Build the complete URL for pagination
url =
“https://${this.serverName}/${this.apiName}${next.substring(viewNamePos)}";
}
}
}

return url;

}

// Method to fetch the next page of results

async fetchNextRows(nextUrl) {
const errorkElement = document.getElementById("errorMessage");
if (errorElement) errorElement.style.display = "none";

try {
const headers = new Headers({

Seite 26 von 46

LeadSuccess API for Salesforce

Accept: "application/json",
Authorization: “Basic ${this.credentials}’,

s

const config = {
method: "GET",
headers,
credentials: "same-origin",

1

console.log("Fetching next rows with URL:", nextUrl);
const response = await fetch(nextUrl, config);

if (!response.ok) {
const errorData = await response.json().catch(() => ({}));
this.handleHttpError(response.status, errorData);
return null;

}

return await response.json();

} catch (error) {
this.handleNetworkError(error);
return null;

Salesforce Transfer

LeadSuccess API for Salesforce offers robust integration with Salesforce CRM, allowing you to
transfer Lead data directly to your Salesforce instance. This section details the entire authentication,
connection, and transfer process.

Salesforce Integration Architecture

The Salesforce integration relies on three main components:

1. Front-end (JavaScript): Handles the user interface, client-side authentication and API calls
2. Backend (Node.js): Serves as a secure intermediary between the application and Salesforce
3. Salesforce API: REST API for creating Leads in Salesforce

The interaction between these components uses the OAuth 2.0 flow for secure authentication.

Salesforce Authentication Process

Authentication with Salesforce follows the standard OAuth 2.0 flow:

1. Initialization: The client requests an authentication URL from the backend
2. Authentication: The user is redirected to the Salesforce login page
3. Authorization: The user authorizes the application to access their Salesforce account

Seite 27 von 46

LeadSuccess API for Salesforce

4. Token Exchange: Salesforce returns an authorization code that the backend exchanges for an
access token

5. Session: The backend generates a unique session token that is returned to the client

// salesforceService.js - Method to get the authentication URL
async getAuthuUrl() {
try {
const response = await fetch(" ${this.apiBaseUrl}/salesforce/auth™, {
method: 'GET',

headers: {
"Accept': 'application/json',
'Cache-Control': 'no-cache, no-store, must-revalidate’
}
1

if (!response.ok) {
throw new Error("HTTP error: ${response.status});

}

const data = await response.json();
console.log('Auth URL received');
return data.authUrl;

} catch (error) {
console.error('Error getting auth URL:', error);
throw error;

Lead Transfer Process
The complete process of transferring a Lead to Salesforce includes the following steps:

Select a Lead: Select a Lead or Lead Report from the list

Initiate Transfer: Click on the “Transfer to Salesforce” button

Connection Check: The application checks if you are already connected to Salesforce
Authentication: If necessary, a Salesforce authentication window opens

Data Preparation: The application prepares and validates the Lead data

Duplicate Check: The system checks if the Lead already exists in Salesforce

Lead Transfer: The data is sent to Salesforce via the backend

N U A WDNPR

Confirmation: The application displays the transfer result with the Salesforce ID

// displaylLeadTransferController.js - Complete transfer function
async function continueTransferWithToken() {
const transferStatus = document.getElementById('transferStatus');
const transferBtn = document.getElementById('transferToSalesforceBtn');

try {
// Display transfer status

transferStatus.innerHTML = °
<div class="transfer-pending">

Seite 28 von 46

LeadSuccess API for Salesforce

<svg xmlns="http://www.w3.0rg/2000/svg" width="20" height="20" viewBox="0
0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-
linecap="round" stroke-linejoin="round">
<circle cx="12" cy="12" r="10"/>
<polyline points="12 6 12 12 16 14"/>
</svg>
Lead transfer in progress...
</div>

k)

// Prepare Lead data
const leadDataToSend = {...selectedLeadData};

// Clean invalid data
delete leadDataToSend.State; // Avoids Salesforce validation issues
for (let field in leadDataToSend) {

if (
leadDataToSend[field] === 'N/A' ||
leadDataToSend[field] === 'null' ||
leadDataToSend[field] === 'undefined' ||
leadDataToSend[field] === null ||
leadDataToSend[field] === undefined

) A

// Remove fields with invalid values
delete leadDataToSend[field];

}

}

// Handle required Salesforce fields

if (!leadDataToSend.lLastName || leadDataToSend.LastName === 'N/A") {
leadDataToSend.LastName = 'Unknown';

}

if (!leadDataToSend.Company || leadDataToSend.Company === 'N/A"') {
leadDataToSend.Company = 'Unknown';

}

if (leadDataToSend.Country === 'N/A"') {
delete leadDataToSend.Country;

}

// Call the transfer API
const response = await fetch(${appConfig.apiBaseUrl}/direct-lead-transfer , {
method: 'POST',
headers: {
'Content-Type': 'application/json'
¥
body: JSON.stringify({
sessionToken,
leadData: leadDataToSend
)
1

const result = await response.json();

// Handle authentication errors
if (!response.ok) {

Seite 29 von 46

LeadSuccess API for Salesforce

// If the session has expired, restart authentication
if (response.status === 401) {
localStorage.removeIltem('sf_session_token');
sessionToken = null;
handleTransferButtonClick();
return;

}

throw new Error(result.message || “Error ${response.status});

// Display successful transfer result
transferStatus.innerHTML = °
<div class="status-success">
<svg xmlns="http://www.w3.0rg/2000/svg" width="20" height="20" viewBox="0 0 24
24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-
linejoin="round">
<path d="M22 11.08V12a10 10 © 1 1-5.93-9.14"/>
<polyline points="22 4 12 14.01 9 11.01"/>
</svg>
Lead successfully transferred to Salesforce
</div>
<div class="status-details">
<p>Salesforce ID: ${result.leadId}</p>
<p>Status: ${result.status}</p>
<p>Message: ${result.message}</p>
</div>
B
// Update connection status
updateConnectionStatus('connected’', 'Connected to Salesforce');
} catch (error) {
console.error('Error during transfer:', error);

// Display errors
transferStatus.innerHTML =
<div class="status-error">
<svg xmlns="http://www.w3.0rg/2000/svg" width="20" height="20" viewBox="0 0 24
24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-
linejoin="round">
<circle cx="12" cy="12" r="10"/>
<line x1="15" y1="9" x2="9" y2="15"/>
<line x1="9" y1="9" x2="15" y2="15"/>
</svg>
Transfer failed: ${error.message || 'Unknown error'}
</div>

B
} finally {
// Reset button state
isTransferInProgress = false;
transferBtn.disabled = false;
transferBtn.innerHTML = °
<svg xmlns="http://www.w3.0rg/2000/svg" width="16" height="16" viewBox="0 0 24
24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-
linejoin="round">
<path d="M12 5v14M19 121-7 7-7-7"/>

Seite 30 von 46

LeadSuccess API for Salesforce

</svg>
Transfer to Salesforce

)

Server-Side Implementation (server.js)

The backend handles secure interaction with Salesforce via the jsforce module, and implements the
following endpoints:

1. Authentication URL Generation (/api/salesforce/auth)
// server.js - Authentication URL generation endpoint

apiRouter.get('/salesforce/auth', (req, res) => {

try {
const authUrl =

"${SF_LOGIN_URL}/services/oauth2/authorize?response_type=code&client_id=${SF_CLIENT_ID
}&redirect_uri=${encodeURIComponent (SF_REDIRECT_URI)}&scope=api%20id%20web%20refresh_t
oken;
res.json({ authurl });
} catch (error) {
console.error('Error generating auth URL:', error);
res.status(500).json({ error: 'Failed to generate authorization URL' });
}
1

2. OAuth Callback (/api/oauth2/callback)

Processes the Salesforce response after authentication, exchanges the code for a token, and stores
the session information.

3. Session Check (/api/salesforce/session-check)

// server.js - Session check endpoint

apiRouter.get('/salesforce/session-check', (req, res) => {
const sessionToken = req.headers['x-session-token'];

if (!sessionToken || !tokenStore.has(sessionToken)) {
return res.status(401).json({
success: false,
message: 'Invalid or expired session'
1
¥

// Check session expiration (1 hour)
const session = tokenStore.get(sessionToken);
const now = Date.now();

Seite 31 von 46

LeadSuccess API for Salesforce

if (now - session.timestamp > 3600000) {
tokenStore.delete(sessionToken);
return res.status(401).json({
success: false,
message: 'Session expired'’
s
}

return res.json({

success: true,

message: 'Session valid'
3
1

4. Lead Transfer (/api/direct-lead-transfer)

Main endpoint that receives Lead data, checks for potential duplicates, and creates the Lead in
Salesforce.

// server.js - Extract from the transfer endpoint
// Create Lead in Salesforce

try {
const result = await conn.sobject('Lead').create(sfLeadData);

if (result.success) {
console.log('Lead created successfully, ID:', result.id);
return res.json({
success: true,
leadId: result.id,
status: 'Transferred',
message: 'Lead successfully transferred to Salesforce'
1
} else {
console.error('Lead creation failed:', result.errors);
return res.status(400).json({
success: false,
message: "Failed to create lead: ${result.errors.join(', ')}
1

}
} catch (sfError) {

console.error('Salesforce API error:', sfError.message);
return res.status(400).json({

success: false,

message: ~Salesforce error: ${sfError.message}"

1)

Salesforce Configuration

For the integration to work, you must configure a connected app in Salesforce with the following
settings:

Seite 32 von 46

LeadSuccess API for Salesforce

1. Application Name: LeadSuccess API Integration

OAuth Callback URL: Full URL of your callback endpoint (e.g.,
https://yourdomain.com/api/oauth2/callback)
3. Required OAuth Scopes: api, id, web, refresh_token

The following environment variables must be configured on the server:

SF_CLIENT _ID=your_client_id
SF_CLIENT_SECRET=your_client_secret
SF_LOGIN_URL=https://login.salesforce.com

For Salesforce sandbox environments, use https://test.salesforce.com as SF_LOGIN_URL.

Transfer Error Handling

The application handles several types of errors that can occur during transfer:

Authentication Errors: Session expiration, invalid tokens

Lead Duplicates: Automatic detection of existing Leads by email

Validation Errors: Missing or invalid data (e.g., unsupported country)
Salesforce API Errors: Issues with the Salesforce API (quotas, permissions)
Network Errors: Connection issues between the client, backend, and Salesforce

vk wnNe

SalesforceService.js - Salesforce Integration Service

The SalesforceService service is specifically designed to handle integration with Salesforce CRM. It
manages authentication, connection status checking, and data transfer to Salesforce.

Architecture and Key Features

// salesforceService.js
import { appConfig } from

../config/salesforceConfig.js";

class SalesforceService {
constructor() {
this.apiBaseUrl = appConfig.apiBaseUrl;
this.sessionToken = localStorage.getItem('sf session_token') || null;

}

// Check Salesforce connection status
async checkConnection() {

/] ...
}

// Get Salesforce authentication URL
async getAuthUrl() {
/]l ...
}
Seite 33 von 46

LeadSuccess API for Salesforce

// Session token management
setSessionToken(token) {

/] ...

// Transfer a lead to Salesforce
async transferLead(leadData) {
// ...

// Logout from Salesforce
async logout() {
/...

export default SalesforceService;

Connection Check

const response = await fetch(" ${this.apiBaseUrl}/salesforce/connection-status™, {
method: 'GET',
headers: {

"Accept': 'application/json’,
'Cache-Control': 'no-cache, no-store, must-revalidate',
'X-Session-Token': this.sessionToken || "'
}
1

if (!response.ok) {
throw new Error("HTTP error: ${response.status});

}

const status = await response.json();

return status;

} catch (error) {
console.error('Connection check error:', error);
return { connected: false, error: error.message };

Salesforce Authentication

The getAuthUrl method allows you to get the Salesforce authentication URL to start the OAuth
authentication process.

async getAuthurl() {

try {
console.log('Requesting Salesforce auth URL...');

const response = await fetch(${this.apiBaseUrl}/salesforce/auth™, {
method: 'GET',

Seite 34 von 46

LeadSuccess API for Salesforce

headers: {
"Accept': 'application/json',
'Cache-Control': 'no-cache, no-store, must-revalidate'
¥
3

if (!response.ok) {
throw new Error("HTTP error: ${response.status});

}

const data = await response.json();
console.log('Auth URL received');
return data.authurl;

} catch (error) {
console.error('Error getting auth URL:', error);
throw error;

Lead Transfer to Salesforce

The transfer Lead method is the main function that handles sending Lead data to Salesforce.
async transferLead(leadData) {
try {
// Check for session token presence
if (!this.sessionToken) {
console.error("Error: No session token available");
throw new Error('Not connected to Salesforce. Please connect first.');

}

// Prepare request options
const requestOptions = {
method: 'POST',
headers: {
'Content-Type': 'application/json',
"Accept': 'application/json',
'Cache-Control': 'no-cache, no-store, must-revalidate',
'X-Session-Token': this.sessionToken

1
body: JSON.stringify(leadData)

1

try {
// Execute the request

const response = await fetch(" ${this.apiBaseUrl}/salesforce/transfer-lead’,
requestOptions);

let resultData;

// Process response with robust error handling

try {
const responseText = await response.text();

console.log('Response text:', responseText);

Seite 35 von 46

LeadSuccess API for Salesforce

try {
resultData = JSON.parse(responseText);

console.log('JSON response parsed:', resultData);
} catch (parsekrror) {
console.error('JSON parsing error:', parseError);
throw new Error(Non-JSON response: ${responseText});
¥
} catch (textError) {
console.error('Error reading response text:', textError);
throw new Error('Unable to read server response');

}

// Handle HTTP errors
if (!response.ok) {
console.error('Non-OK HTTP response:', response.status, resultData);

// Special handling for expired sessions

if (response.status === 401) {
console.log('Session expired, removing token');
this.setSessionToken(null);

}

throw new Error(resultData.message || “HTTP error: ${response.status});

}

// Return data on success
console.log('Transfer successful:', resultData);
return resultData;
} catch (fetchError) {
console.error('Fetch error:', fetchError);
throw fetchError;
}
} catch (error) {
console.error('Error in transferLead:', error);
console.error('Stack trace:', error.stack);
throw error;
} finally {
console.log('===== END TRANSFERLEAD =====');
}
}

Session Token Management
The setSessionToken method handles storing and removing the session token in localStorage.

setSessionToken(token) {
this.sessionToken = token;
if (token) {
localStorage.setItem('sf_session_token', token);
console.log('Session token saved:', token.substring(e, 6) + '...");
} else {
localStorage.removeltem('sf _session_token');
console.log('Session token cleared');
Seite 36 von 46

LeadSuccess API for Salesforce

Salesforce Logout

The logout method allows you to properly log out of Salesforce.

async logout() {

try {
console.log('Logging out from Salesforce...');

if (!this.sessionToken) {
return { success: true, message: 'Already logged out' };

}

const response = await fetch(" ${this.apiBaseUrl}/salesforce/logout’, {
method: 'POST',
headers: {

"Accept': 'application/json',
'Cache-Control': 'no-cache, no-store, must-revalidate',
'X-Session-Token': this.sessionToken
}
1)

// Remove session token regardless of outcome
this.setSessionToken(null);

if (!response.ok) {
throw new Error("HTTP error: ${response.status});

}

const result = await response.json();
return result;

} catch (error) {
console.error('Logout error:', error);
// Remove token even in case of error
this.setSessionToken(null);
throw error;

Postman Collection

LeadSuccess API for Salesforce provides a complete Postman collection to facilitate testing and
integration with the API. This collection contains all available endpoints, with preconfigured

Seite 37 von 46

LeadSuccess API for Salesforce
examples and automated tests.

Getting the Postman Collection

There are two methods to get the Postman collection:

Method 1: From the Application Interface

6. Loginto the LeadSuccess API application

7 Click on the “Test API in Postman” button in the application header
8. A modal window displays with information about the collection

9 Click on “Download Collection” to download the collection JSON file

// postman-integration.js - Collection download button

document.getElementById('downloadBtn').addEventListener('click', function() {
// Path to the collection JSON file

const jsonFileUrl = "~${window.location.origin}/postman/LeadSuccess-API-

Collection.json;

// Create download link

const downloadLink = document.createElement('a');
downloadlLink.href = jsonFileUrl;

downloadlLink.download = 'LeadSuccess-API-Collection.json';
document.body.appendChild(downloadLink);
downloadLink.click();
document.body.removeChild(downloadLink);

// Change the modal content after download
/] ...
1

Method 2: Direct Access to the File

The collection file is available at the following address:

https://[your-domain]/postman/LeadSuccess-API-Collection.json

Postman Collection Structure

The collection is organized hierarchically to reflect the API structure:

LeadSuccess API Collection/

F— Authentication/

| — Login

F— Event Management/
F— Get All Events
L— Get Event By ID

F— Lead Management/
F— Get Leads by Event
F— Get Lead by ID

Seite 38 von 46

https://[your-domain]/postman/LeadSuccess-API-Collection.json

| L— Filter Leads
F— Lead Report Management/
F— Get Lead Reports by Event
L— Get Lead Report by ID
F— Attachment Management/
LI— Get Attachment by ID
Salesforce Integration/
F— Get Auth URL
F— Check Session
Transfer Lead

Environment Variables Configuration

To use the collection effectively, you must configure a Postman environment with the following

LeadSuccess API for Salesforce

variables:

Variable Description Example

serverName LeadSuccess server name api.leadsuccess.com

apiName APl name LeadSuccess-API

username Username userl23

password Password password123

auth Authentication token (automatically automatically generated

generated)

eventld Event ID to filter Leads 550e8400-e29b-41d4-a716-
446655440000

leadld ID of a specific Lead 6b86b273-eb8a-4b7c-8c3d-
cfc23b9a6000

attachmentld ID of an attachment d4735e3a-5b4a-4a8e-9b1d-
dccebfObc000

sfSessionToken | Salesforce session token generated during authentication

Pre-Request Scripts and Automated Tests

The collection includes scripts to automate certain tasks:

Pre-Request Script for Authentication

Collection JSON File Example

Here is an excerpt from the collection JSON file to illustrate its structure:

{
"info": {
" _postman_id": "alb2c3d4-e5f6-7890-alb2-c3d4e5f67890",
"name": "LeadSuccess API Collection",
"description"”: "Collection for testing the LeadSuccess API for Salesforce",
"schema": "https://schema.getpostman.com/json/collection/v2.1.0/collection.json'
¥

Seite 39 von 46

LeadSuccess API for Salesforce

"item": [
{
"name": "Authentication",
"item": [
{
"name": "Login",

"request": {
"method": "GET",
"header": [

{
"key": "Authorization",
"value": "Basic {{auth}}",
"type": "text"
}
1,
"url": {

"raw": "https://{{serverName}}/{{apiName}}/?$format=json",
"protocol"”: "https",
"host": ["{{serverName}}"],
"path": ["{{apiName}}", ""],
Ilquer‘yll: [
{

"key": "$format"”,
"value": "json"
}
]
s

"description"”: "Authenticate with the LeadSuccess API"

s
"response": []
}
1
1
{

"name": "Event Management",
"item": [
{
"name": "Get All Events",
"request”: {
"method": "GET",
"header": [
{
"key": "Authorization",
"value": "Basic {{auth}}",
"type": "text"
}
1,
"url": {
"raw": "https://{{serverName}}/{{apiName}}/LS_Event?$format=json",
"protocol"”: "https",
"host": ["{{serverName}}"],
"path": ["{{apiName}}", "LS_Event"],
"query": [

"key": "$format"”,
"value": "json"
}
]
s

"description": "Get all events”

}s

"response": []

}
Seite 40 von 46

LeadSuccess API for Salesforce

]

¥
// ... other endpoints ...

]
}

Using the Collection

Import the JSON file into Postman (File > Import)

Create a new environment (Environment) and configure the required variables
Select the created environment from the dropdown list in the top right

Start by running the “Login” request in the “Authentication” section

Once authenticated, you can test the other endpoints

vk wNe

You can also use Postman’s “Runner” function to run an automated test suite on all endpoints.

Utils Helper

The helper.js module provides a set of essential utility functions used throughout the application to
manage date formatting, array sorting, filter handling, and other common functionalities.

Date Formatting and Manipulation

// Date formatting for display
export function formatDate(dateString) {
if (!dateString) return 'N/A";

// Handle specific "/Date(timestamp)/" format
if (typeof dateString === 'string' && dateString.includes('/Date(')) {
const timestamp = dateString.match(/\/Date\((\d+)\)\//);
if (timestamp && timestamp[1]) {
const date = new Date(parseInt(timestamp[1]));
return date.toISOString().split('T')[@]; // YYYY-MM-DD format

¥
}

// Handle standard dates
try {
const date = new Date(dateString);
if (isNaN(date.getTime())) return dateString;
return date.toISOString().split('T')[0];
} catch (e) {
return dateString;

Seite 41 von 46

LeadSuccess API for Salesforce

// Parse dates in different formats (maximum flexibility)
export function parseDate(dateString) {
if (!dateString) return null;

// dd.mm.yyyy format (European format)
if (/M\d{2}\.\d{2}\.\d{4}$/.test(dateString)) {
const parts = dateString.split('.");
const date = new Date(parseInt(parts[2]), parseInt(parts[1])-1,
parseInt(parts[0]));
return date;

}

// yyyy-mm-dd format (ISO format)
if (/~\d{4}-\d{2}-\d{2}$/.test(dateString)) {
return new Date(dateString);

}

// dd/mm/yyyy format
if (/AM\d{2}\/\d{2}\/\d{4}$/.test(dateString)) {

const parts = dateString.split('/');

return new Date(parseInt(parts[2]), parselnt(parts[1])-1, parseInt(parts[0]));
}

// General parsing attempt

const date = new Date(dateString);

if (!isNaN(date.getTime())) {
return date;

}

return null;

// Date formatting for OData queries
export function formatDateForOData(date) {
if (!(date instanceof Date) || isNaN(date)) {
console.error("Invalid date:", date);
return null;

}

const year = date.getFullYear();

const month = (date.getMonth() + 1).toString().padStart(2, '0');
const day = date.getDate().toString().padStart(2, '0');

return "~ ${year}-${month}-${day} ;

Data Table Management
// Table sorting
export function sortTable(index, th) {
let sortAsc = !th.classlList.contains('asc');
const tableRows = document.querySelectorAll('tbody tr');

[...tableRows].sort((a, b) => {
Seite 42 von 46

LeadSuccess API for Salesforce

let firstRow = a.querySelectorAll('td')[index].textContent.toLowerCase();
let secondRow = b.querySelectorAll('td')[index].textContent.toLowerCase();
return sortAsc ? (firstRow > secondRow ? 1 : -1) : (firstRow < secondRow ? 1 : -
1);
}) .forEach(sortedRow => document.querySelector('tbody").appendChild(sortedRow));

th.classList.toggle('asc', sortAsc);
th.classlList.toggle('desc', !sortAsc);

}

// Table and message clearing

export function clearTable() {
const tableHead = document.getElementById('tableHead');
const tableBody = document.getElementById('tableBody');

if (tableHead) tableHead.innerHTML = '';

if (tableBody) tableBody.innerHTML = '';

const noDataMessage = document.getElementById('noDataMessage');
if (noDataMessage) noDataMessage.textContent = '';

const searchInput = document.getElementById('search');

if (searchInput) searchInput.value = '';

OData Query Functions

// Escape values for OData queries

export function escapeODataValue(value) {
return value.replace(/'/g, "''");

}

// Reset filters
export function resetFilters(entity, fields) {
localStorage.removeltem(${entity} Filters’);
fields.forEach(field => {
const input = document.getElementById(filter-${field});
if (input) {
input.value = '';
}
1
clearTable();
const noDataMessage = document.getElementById('noDataMessage');
noDataMessage.textContent = 'Filters have been reset. Please enter new values and
click "Apply Filters".';
}

Pagination Management

// Pagination setup

export function setupPagination(apiService, displayDataFunction) {
let nextUrl = '';

// Function to update next URL
function updateNextUrl(data) {
nextUrl = apiService.getNextUrl(data);
const nextButton = document.getElementById('nextButton');
if (nextButton) {
nextButton.disabled = !nextUrl;

}
Seite 43 von 46

LeadSuccess API for Salesforce

return nextUrl;

// Function to load next rows
async function loadNextRows() {
if (!nextuUrl) {
console.error('No next URL found.');
return;

}

const nextButton = document.getElementById('nextButton');
if (nextButton) {
nextButton.textContent = 'Loading...';
nextButton.disabled = true;

}

try {
const data = await apiService.fetchNextRows(nextUrl);

if (data && data.d && data.d.results && data.d.results.length > 0) {
// Display data
displayDataFunction(data.d.results, true);

// Update next URL

updateNextUrl(data);
} else {
nextUrl = '';

if (nextButton) {
nextButton.disabled = true;
}
}
} catch (error) {
console.error("Error loading next rows:", error);
} finally {
if (nextButton) {
nextButton.textContent = 'Next';
nextButton.disabled = !nextUrl;
}
}
}

// Function to initialize pagination buttons
function initPagination() {
const nextButton = document.getElementById('nextButton');
if (nextButton) {
nextButton.addEventListener('click', loadNextRows);
nextButton.disabled = true;
}
}

// Return an object with pagination functions
return {

updateNextUrl,

loadNextRows,

initPagination

Seite 44 von 46

LeadSuccess API for Salesforce

1

Error codes

For all requests, a result code and possibly a textual error message is returned.

The error message serves to describe the error for a developer as exactly as possible. Ideally, it
should be saved in case of error in a log file. It is not intended to be displayed to an end user
(exhibitor).

The result code is roughly based on the HTTP status codes and is intended as the basis for an
automatic response to specific errors. The three-digit numeric error code can be followed by a detail
error code with a dot.

The rough classification of the error is made possible by the first digit of the result code:
¢ "2" for success

¢ "4" for client-side errors, e.g. wrong or missing parameters

¢ "5" for server-side errors

Common error codes used by the API:

¢ "400" Bad Request: Incorrect request, e.g. missing mandatory parameter

¢ "404" Not Found: No matching record was found. If appropriate, the type of missing data record is
specified as the detail error code:

¢ "500" Internal Server Error: There is a problem on the server, e.g. missing documents. Here a
LeadSuccess administrator should be contacted. The plain text message helps to localize the
problem!

Please note that in addition to the application error codes defined here, further error messages of
the overlying protocol levels (ODATA, web server) can occur.

Seite 45 von 46

Version Overview:

LeadSuccess API for Salesforce

Version Version Date Changes

Manual Database

0.1 8.2.24 2023-11-02 | 1st pre-release of LeadSuccess API for Salesforce manual

0.2 8.2.4 2023-11-02 | Added some more description about retrieval of subsequently
changed leads

0.3 8.7.00 2024-11-22 | Added: LS_LeadReport, IsReviewed for LS_Lead

0.4 8.7.03 2025-04-04 | Added technical docu for sample website

Seite 46 von 46

